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A note on symmetric connections
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Abstract

In this paper we analyze a reciprocal of the fundamental theorem of Riemannian geometry. We
give a condition for a symmetric connection to be locally the Levi-Civita connection of a metric. We
also construct a couple of natural examples of connections on then-dimensional torus and investigate
the global problem.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The problem of the determination of a metric compatible with a given symmetric con-
nection∇ in the tangent bundle TM of a smooth manifoldM has some recent history. The
problem was investigated mainly by mathematical physicists like Thompson in[5] and[6]
and Edgar in[2]) and[3]. In his paper[2] Edgar gives necessary and sufficient conditions
for a volume preserving connection (which in our invariant formulation is equivalent with
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the vanishing of the “Chern” form associated to the connection) to be locally the Levi-
Civita connection of a metric. In this paper we give an example of a connection on the
n-dimensional torus which satisfies the conditions of his theorem, but which is not globally
metric. Global natural questions also arise and we address this question by analyzing a
natural map. This map can be described briefly as the map which assigns a connection∇ to
a Riemannian metricg. We analyze the linearization of this map, describing precisely what
the kernel is. The finite dimensionality of the kernel of this map is established. As Edgar
notes there are two essential conditions for a symmetric connection to be locally metric.
One is that the trace of the curvature form has to be zero, and the other one is the existence of
a Bianchi tensor. These are, according to Edgar[2], sufficient and necessary conditions for
the connection to be locally metric. In order to investigate the global existence of a metric
one has to take into account the holonomy group of the connection. The earliest result in
this direction was obtained by Schmidt in[4] where he proved the following:

Theorem 1.1 (Schmidt[4]). Let ∇ be a symmetric connection in TM. If the holonomy
group of the connection isH and is a subgroup of the orthogonal group O(n), then ∇ is the
Levi-Civita connection of a Riemannian metric.

Let us investigate the local problem first. Let∇ denote a symmetric connection on the
tangent bundle of a smooth manifoldMn, (ei)ni=1 a local frame and (θji ) the connection

forms of∇ (i.e.∇ei = θ
j
i ej ). As a consequence of Cartan‘s structural equation

dθji = Ω
j
i − θki ∧ θjk,

we see that the trace of the curvature form

Tr(Ω) =
n∑

i=1

Ωii

is independent of the choice of the frame and we shall call this two-form the Chern form
associated to the connection. The reason is that the cohomology class of this form is inde-
pendent of the connection and it is also called the first Chern class of the manifold. If the
connection is locally a metric connection then the Cartan equation can be rewritten as

Ωij = dθij − θik ∧ θkj,

and the curvature matrix in this case being skew symmetric it follows that the trace (which is
invariant) has to be zero. Thus, we obtain a necessary condition for a symmetric connection
to be locally metrizable. We shall see that this is not sufficient for the local metrizability of
a connection. A very restrictive sufficient condition is given by the following lemma:

Lemma 1.1. Let M be a smooth manifold and ∇ a symmetric flat connection. Then ∇ is
locally metrizable.

The proof of the lemma is elementary and therefore we omit it.
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2. Basic examples

The following is an example of a connection with vanishing Chern form which is not
even locally a metric connection. LetE = ∂θ andF = ∂ψ be the two vector fields on
T 2 = S1 × S1 defined by the two anglesθ andψ corresponding to the two circles and
define∇ as

∇EE = ∇FF = 0, ∇EF = ∇FE = F. (1)

It is easy to see that if this were globally a metric connection the sectional curvature should
be positive, thus, in contradiction with the Euler characteristic ofT 2. In what follows we
will see that∇ defined as above cannot be locally the Levi-Civita connection of a metric.

Proposition 2.1. Let ∇ defined as in(1). Then the Chern form of the connection is zero but
∇ is not locally a metric connection.

Proof. First we compute the Chern form of∇. The connection forms with respect to the
frameE = ∂θ, F = ∂ψ are defined by the relations

∇E = θ1
1E + θ2

1F,

and

∇F = θ1
2E + θ2

2F.

Hence

θ1
1 = 0, θ2

1 = dψ, θ1
2 = 0, θ2

2 = dθ

so it follows that the curvature forms

Ω1
1 = Ω2

2 = 0.

Thus the Chern form is zero. Next we show that this connection cannot be locally a metric
connection. The problem is equivalent to proving the same thing for the connection inR

2.
By choosing an appropriate chart we can actually “identify”∂θ with ∂x and∂ψ with ∂y.
If this connection were locally a metric connection we could actually recover the metric
by parallel transporting the vectors∂x and∂y along radii emanating from the origin and
then defining these vector fields as being orthonormal. After doing, this one computes the
coefficients of this metric with respect to the (x,y) coordinates and obtains

g11 = 2s2 − 2s+ 1

(1 − s)2
, g22 = 1

(1 − s)2
, g12 = g21 = s

(1 − s)2
.

Heres = x+ y and the coefficients of the inverse metric are

g11 = 1, g22 = 2s2 − 2s+ 1, g12 = g21 = −s.
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From the relations which define the connection it is obvious thatΓ 1
11 = 0, while the corre-

sponding Christofell symbol of the metric (gij) is different from zero in a neighborhood of
the origin. �

An example of a flat connection (hence locally metric) can be constructed on then-
dimensional torus as follows. Let

T n = S1 × S1 × · · · × S1
︸ ︷︷ ︸

n-times

,

andθ1, θ2, . . . , θn be the corresponding angles on the circles. Then, we have the following
global vector fieldsEi = ∂θi for i = 1, n. We define the connection through its action on
these vector fields, namely:

∇EiEi = Ei, for i = 1, n and ∇EiEj = ∇EjEi = 0 for i �= j. (2)

The following proposition shows that this is a locally metrizable connection which is not
globally metrizable.

Proposition 2.2. Let ∇ defined as in (2) on T n. Then ∇ is a flat connection which is not
globally a metric connection.

Proof. First we shall see that the connection is flat. LetR(X,Y)Z denote the full Riemannian
tensor. Then

R(Ei,Ej)Ei = ∇Ei∇EjEi − ∇Ej∇EiEi = 0 − 0 = 0,

henceR ≡ 0. Here we have used the fact thatEi andEj commute.
Next we shall prove that∇ is not globally the connection associated to a metric. Let

E1 = ∂θ1 and let us assume the contrary. Assumeg(X, Y ) = 〈X, Y〉 is a Riemannian metric
having∇ as its Levi-Civita connection. Then

E1〈E1, E1〉 = 〈2∇E1E1, E1〉 = 2〈E1, E1〉.

Now letγ = γ(t) be a flow line of the vector fieldE1 (this flow line is actually just one of
the circles which generates the torus) and letf (t) = |E1(γ(t))|2. Then obviously−∞ <

t < +∞ andf satisfies the differential equation

f ′ = 2f,

which, in turn, implies thatf is not bounded (being an exponential). Hence,∇ cannot be
globally a metric connection although, since is flat, it is locally metrizable according to
Lemma 1.1. �

Next section addresses the global problem by investigating a natural map.
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3. The Levi-Civita map

Globally we ask the following natural questions:

1. Are there any manifolds where any locally metric connection is globally metrizable?
2. Under what topological assumptions is the map

g → ∇g

surjective onto the space of all locally metrizable connections?

Here,g denotes a Riemannian metric onM and∇g its associated Levi-Civita connection.
Before stating the main global result of the paper we need to introduce more structure. In
what followsMn is a compact manifold with a reference Riemannian metricλ and with
associated Levi-Civita connectionD. LetT denote the completion of the space of all smooth
positive definite symmetric tensor fields of type (2, 0) endowed with the norm

‖h‖1 = sup
p∈M

|h(p)| + sup
p∈M

|(Dh)(p)|. (3)

Let

B = {∇ −D|∇ is a symmetric connection on TM},

endowed with the norm defined as

‖B‖ = sup
p∈M

|B(p)|. (4)

Here, the pointwise length of tensors is taken with respect to the reference metricλ. The
choice of the metricλ is not important since any other metric will produce equivalent norms.
It is obvious thatB is a subset of the space of smooth symmetric tensor fields of type (2,
1). Let B be the completion ofB. Having defined all of the above, we observe that the
Levi-Civita map is a mapping between the open setO of positively definite tensors inT and
B . This mapping can be interpreted as a parametrization of the space of metric connections.
A more detailed topological analysis of the Levi-Civita map is done by Williams in[7]. The
following global result refers to the properties of the mapping:

L : O→ B,

whereL(g) = ∇g −D and∇g is the Levi-Civita connection ofg.

Theorem 3.1. Let Mn be a compact smooth manifold. Then the map L defined as above
is of class C1 and its differential has finite dimensional kernel. Moreover, the kernel of the
differential of the map at the point g ∈ T is the space of all the symmetric tensors of type
(2, 0)which are parallel with respect to the Levi-Civita connection of g.
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Proof. From the definition ofO andL it is easy to see that the map is of classC1. Now
let us denote byTgL the differential ofL at the pointg ∈ O. If h is an arbitrary vector inT
then

TgL(h) = lim
t→0

1

t
(L(g+ th) − L(g)). (5)

First, we note that for small values of the parametert the symmetric tensorg+ th is a
Riemannian metric and consequently, we have a unique connection associated to it, namely
∇g+th. From the definition of the mappingL we have

L(g+ th) − L(g) = ∇g+th − ∇g. (6)

Taking into account(5) and (6), and the fact thatL is of classC1, and since all of the
operations involved are continuous we note that

g(TgL(h)(X, Y ), Z) = lim
t→0

1

t
(g+ th)((∇g+th − ∇g)(X, Y ), Z), (7)

for all vector fieldsX, Y,Z ∈ TM. Let us now concentrate on the right-hand side of(7). We
have

(g+ th)((∇g+th − ∇g)(X, Y ), Z) = (g+ th)((∇g+th(X, Y ), Z) − g(∇g(X, Y ), Z)

−th(∇g(X, Y ), Z),

and as in[1, p. 234, Eq. (9)]we have the following:

(g+ th)((∇g+th(X, Y ), Z) = 1
2{X((g+ th)(Y,Z)) + Y ((g+ th)(Z,X))

−Z((g+ th)(X, Y )) − (g+ th)([X, Y ], Z)

−(g+ th)([Y,Z], X) + (g+ th)([Z,X], Y )}, (8)

as well as

g((∇g(X, Y ), Z) = 1
2{Xg(Y,Z) + Yg(Z,X) − Zg(X, Y ) − g([X, Y ], Z)

−g([Y,Z], X) + g([Z,X], Y )}. (9)

It follows that the right-hand side of(7) becomes

lim
t→0

1

t
(g+ th)((∇g+th − ∇g)(X, Y ), Z)

= 1

2
{X(h(Y,Z)) + Yh(Z,X) − Zh(X, Y ) − h([X, Y ], Z) − h([Y,Z], X)

+h([Z,X], Y )} − h(∇g(X, Y ), Z), (10)

hence

g(TgL(h)(X, Y ), Z) = 1
2{X(h(Y,Z)) + Yh(Z,X) − Zh(X, Y ) − h([X, Y ], Z)

−h([Y,Z], X) + h([Z,X], Y )} − h(∇g(X, Y ), Z). (11)
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We note that(11)implicitly definesTgL(h). All we need to prove now is that ifh ∈ ker(TgL),
then actuallyh is parallel with respect to∇g. Leth ∈ ker(TgL) , then according to(11)

1
2{X(h(Y,Z)) + Yh(Z,X)−Zh(X, Y ) − h([X, Y ], Z) − h([Y,Z], X) + h([Z,X], Y )}

= h(∇g(X, Y ), Z), (12)

for everyX, Y,Z ∈ TM. Now let us compute∇gh. We have

∇g(X, h)(Y,Z) = X(h(Y,Z)) − h(∇g(X, Y ), Z) − h(Y,∇g(X,Z)). (13)

HereX,Y,Z are arbitrary tangent vector fields and∇g(X, h)(Y,Z) is the covariant derivative
of theh tensor in the directionX. Applying (12)once again and permutingZ andY we have

1
2{X(h(Y,Z)) + Zh(Y,X) − Yh(X,Z) − h([X, Y ], Z) − h([Z, Y ], X) + h([Y,X], Z)}

= h(∇g(X,Z), Y ). (14)

Now taking into account(12) and (14)we observe that the right-hand side of(13) is zero,
hence

∇gh = 0.

This proves the theorem.�

Finally, we point out that in the event that the cokernel of the Levi-Civita map is finite
dimensional the index of the map is a topological invariant. Heuristically, the dimension
of the kernel of this map quantifies the metrics compatible with a given metric connection,
whereas the dimension of the cokernel of this map measures how far from being globally
metric is a locally metrizable connection . Thus, the latter is again a topological invariant.
In addition, it follows that the dimension of the kernel of the Levi-Civita map has to be itself
topological. Notably, relating the dimension of the kernel or the index of the Levi-Civita
map with the usual topological invariants of the manifold is an interesting question in itself.
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